
196 Journal of Information Science, 31 (3) 2005, pp. 196–208 © CILIP, DOI: 10.1177/0165551505052347

Development of a Universal
Virtual Computer (UVC) for
long-term preservation of
digital objects

J.R. van der Hoeven

Delft University of Technology, Department of Computer
Science (EEMCS); IBM Business Consulting Services; and
Koninklijke Bibliotheek, National Library of the Netherlands

R.J. van Diessen

IBM Business Consulting Services

K. van der Meer

Delft University of Technology, Department of Computer
Science (EEMCS); Antwerp University, Department of
Information and Library Science (IBW); and DECIS, Delft,
Netherlands

Received 20 December 2004
Revised 6 January 2005

Abstract.

Emulation has been proposed as a preservation strategy for
longevity of digital objects. An advantage of emulation is the
relative platform independency. Emulation with a high
degree of platform independency requires a Universal
Virtual Computer (UVC), as described by Lorie. This paper
describes the realization of the enhanced UVC developed for
the National Library of the Netherlands. The preservation
method of the UVC at preservation time and at retrieval time
(in the future) is concisely described, the conceptual model

of the UVC is given, and the object design and the logical
data viewer of the UVC are presented. The UVC has been
realized and proven to work for image types using the JPEG
and GIF87a formats, although performance of the present
UVC can still can be improved. The UVC demonstration tool
is freely available at the Alphaworks web site to let the
general public experience this approach on long-term access.

1. Introduction

The advance of digital objects, like digital documents,
web pages, databases and program derivates, comes
with a challenge. How can digital objects be accessed
and rendered in the future, when information process-
ing hardware, software and file formats have changed
and today’s storage media cannot be read any more? It
is a serious challenge: with the current speed of change
of ICT, it may be impossible to access and render
present information objects within a decade of their
creation, and within half a century society could
remain without accessible digital memory of our times.

1.1. Projects

Influential projects in this area were Cedars (Curl
Exemplars in Digital ARchiveS [1]), its successor
CAMiLEON (Creative Archiving at Michigan & Leeds:
Emulating the Old on the New [2]) in which special
attention was paid to emulation; and NEDLIB (Net-
worked European Deposit Library [3, 4]), the collabora-
tive project of European National Libraries [5],
followed by the IBM/KB Long-Term Preservation (LTP)Correspondence to: Jeffrey.vanderHoeven@kb.nl

J.R. VAN DER HOEVEN ET AL.

study [6] at the National Library of the Netherlands.
The projects led to the insight that durable access to
digital objects needs flexible, robust and durable stan-
dards and standardization of technical subjects (stan-
dards: for example universal formats – PDF [7], SGML
[8]/XML [9], and TIFF [10]); and standards and stan-
dardization of organizational subjects like procedures
for digital archives; and preservation strategies like
emulation and (repeated) migration. The projects also
led to tangible results: basic infrastructures for net-
worked deposit libraries, including demonstrators of
digital archives and operational repositories for digital
objects.

At the National Library of the Netherlands the e-
Depot (electronic repository) with the DIAS (Digital
Information Archiving System [11]) as its core has been
built. The DIAS is an ICT structure already containing
a repository with 2.6 million digital publications in the
autumn of 2004 [12]. This type of result provides a
solid test bed for business models and metadata
schemes, as well as for the different proposed preser-
vation strategies.

1.2. Emulation

One preservation strategy is emulation [13, 14]. Emula-
tion is strongly advocated by Rothenberg [15]. An
emulator imitates a computer platform or application
on top of another computer platform or application.
Although emulation is a rather complex process, it is
not new. It has already been applied for many
purposes. Back in 1994 the computer company Apple
introduced their new Power Macintosh, based on a
PowerPC processor. To continue supporting software
programs written for the older Motorola 68000 proces-
sor, they emulated this processor on the PowerPC
chipset [16]. In a similar way emulators were devel-
oped by different manufacturers to run the Macintosh
Operating System under Microsoft Windows on Intel-
based machines and vice versa.

Gaming is another important field in which emula-
tion plays a prominent role. Emulation forms the key
to run computer games written for an obsolete platform
on a current machine. Numerous emulators can be
found on the Internet [17]. In the open source com-
munity several other interesting emulation projects can
be found, like SIMH [18], Bochs [19] and QEMU [20],
enabling the recreation of historic and current plat-
forms.

In preservation terms, emulation aims at retrieving a
digital object in its original form. This is an advantage
for emulation over migration, another attractive

preservation strategy. Emulation recreates the original
environment without changing the authentic digital
object, while migration entails making periodic trans-
formations in archived information, the need for new
validation and the risk of error propagation [21].
Emulation does not require changes to the original
software to interpret the logical form and to view the
object. The original program runs in executable form
on the emulated environment as it did when running
on the original hardware [22].

Ideally, a single universal emulator could serve as a
platform to run many original applications, enabling
various types of original information objects to be
viewed.

This train of thought raises an important question:
how can we ensure that an emulator, able to execute
preserved digital objects in their (virtual) original
environment, will run correctly on future computers,
without knowing what a future platform will look like?

1.3. The Universal Virtual Computer (UVC)

An answer to the question how an emulator will run
correctly on future computers is found in the concept
of the Universal Virtual Computer (UVC) by Raymond
A. Lorie (IBM Almaden Research Center) [23, 24]. This
concept combines the best aspects of emulation and
migration: emulation through the UVC as a platform-
independent layer on top of (future) hard- and
software, and migration as supported by the conversion
of specific formats to universal technology-independ-
ent formats based on XML-like specifications. The
platform independency promises that programs, devel-
oped for the UVC, can run on this platform today as
well as in the far future, while the technology-
independent formats keep the objects accessible and
understandable over time.

Analysis of the initial results of experiments with a
prototype conducted at the National Library of the
Netherlands (KB) in 2001 looked promising [25, 26].
The KB stated the UVC to be a good candidate to
provide long-term access to their static PDF data. As a
consequence, IBM and KB worked together to develop
an enhanced UVC demonstration tool: the UVC for
images project. It had to be able to fit in the DIAS
system environment and, essentially, to operate on the
DIAS repository.

In this paper, we describe the realization of this UVC,
its conceptual model, its object design and its logical
data viewer, and we discuss concisely the current state
of the UVC, including performance data.

197Journal of Information Science, 31 (3) 2005, pp. 196–208 © CILIP, DOI: 10.1177/0165551505052347

Development of a UVC

2. The UVC-based preservation method

The UVC-based preservation method, now developed,
allows digital objects to be reconstructed in their
original appearance any time in the future using a
unique combination of emulation and migration.

The central idea of the UVC-based preservation
method is based on four different components. These
are:
• Universal Virtual Computer;
• UVC program (format decoder);
• Logical Data Schema (LDS) with information type

description;
• Logical Data Viewer.

A UVC program decodes the file format of a digital
object. This format decoder program runs on the UVC,
which is the platform-independent layer, independent
of future hard- and software changes. Executing the
format decoder delivers element tags, which hold
specific information about the content of the data in a
technology-independent manner. These elements build
the Logical Data View (LDV) of the data, which is quite
similar to XML. The LDV is an instantiation of the LDS,
describing the structure and meaning of the tags as
parts of a specific information type.

All these components are controlled by a Logical
Data Viewer simply called viewer (Figure 1). For recon-
struction, the viewer starts the UVC and feeds it with
the data of the digital object to a format decoder

running on top of the UVC. In return it retrieves an LDV
and reconstructs a specific representation of the
original object’s meaning.

To apply the UVC-based preservation method on pre-
served digital objects, different steps must be taken in
the present as well as in the future. These steps are
described in more detail below.

2.1. At preservation time (the present)

Step 1. To view a digital object in the future, a
detailed description needs to be developed of its
structure (the logical form) and meaning independent
of any technology. This logical view is returned by the
UVC in the future and needs to be interpreted by the
viewer; therefore future developers must be able to
understand it.

As an example, Figure 2 shows a simplified
schematic view of a raster-based image, using the red–
green–blue (RGB) colour model as is used in most
common image formats. The view consists of different
elements, starting with the number of scan lines, rep-
resenting the horizontal lines of an image. It can
contain one or more of these scan lines, which is
depicted by a ‘+’ sign. Each scan line contains one or
more pixels, while each pixel has a position and a
colour.

As mentioned above, executing the UVC will return
this information in such elementary tags. All tags and
their relationships are defined in a blueprint called the
LDS, which explains the tags that are retrieved from the
UVC for a particular type of digital object. Here a type
is defined as a particular group of files, like an image,
sound wave or spreadsheet. The advantage of the LDS
is that the same LDS can be used for all formats of a
type. A simplified LDS for the image type is schemati-
cally depicted in Figure 3.

But knowing the structure of the LDV is not enough.
To understand the meaning of the elements in the LDV,
the LDS provides a description of the information type,
e.g. that the RGB colour scheme is used and how it is
related to the natural colour spectrum.

Step 2. The digital object has to be translated
(migrated) into the description of its logical view.
Therefore, a format decoder running on the UVC is
required that can decode the object’s format, using the
elements defined by the LDS. This format decoder must
be written before the format has become obsolete. For
each format a decoder has to be written, which requires
a lot of effort. But once a decoder is available it can be
applied to every digital object of that format.

198 Journal of Information Science, 31 (3) 2005, pp. 196–208 © CILIP, DOI: 10.1177/0165551505052347

UVC Viewer

Format
decoder

Platform X

Reconstructed view of
digital object

Object data LDS + type
description

Fig. 1. UVC-based preservation method.

J.R. VAN DER HOEVEN ET AL.

Step 3. Future developers have to know how to
construct a UVC, in order to execute the format
decoder program for a particular object’s format.
Software developers in the distant future will need a

well-defined specification of the UVC in order to create
a new UVC. The UVC is designed to be a general-
purpose computer, running on any (future) hardware.

To reproduce a UVC in the future, a description of
the present concept must be preserved. This can be
done as a document in a digital repository, as a
hardcopy on paper and/or on micrographic media.

2.2. At retrieval time (the future)

Step 1. If the digital objects, LDS descriptions, format
decoders and UVC specification have all been pre-
served successfully, any object for which the UVC
fulfils a decoding process can be reconstructed. First, a
UVC has to be created on a current platform. Because
of the simplicity of the UVC concept, it is fairly easy
for skilled software developers to construct a UVC for
a particular platform of the time.

Step 2. Assuming that a proper working UVC exists, a
simple application program must be developed. This
application program, called a viewer, has to control the
UVC and all input/output interaction between it. It
needs to run on future hardware and therefore cannot
be specified at preservation time. The viewer has to
start the UVC, send the encoded data and format

199Journal of Information Science, 31 (3) 2005, pp. 196–208 © CILIP, DOI: 10.1177/0165551505052347

Number of scan lines +

Pixel position Colour

Scan line number Pixel number Red Green Blue

Number of pixels per scan line +

Image

Fig. 2. Simplified schematic view of a raster-based image.

ELEMENT 1 [Image] (10, 24+)

ELEMENT 10 [Image Size] (11, 12)
ELEMENT 11 [Number Scan Lines]
ELEMENT 12 [Number Pixels Per Scan Line]

ELEMENT 24 [Pixel] (25, 29)

ELEMENT 25 [Colour] (26, 27, 28)
ELEMENT 26 [Red]
ELEMENT 27 [Green]
ELEMENT 28 [Blue]

ELEMENT 29 [Pixel Position] (30, 31)
ELEMENT 30 [Scan Line]
ELEMENT 31 [Pixel Number]

Fig. 3. Simplified Logical Data Schema (LDS) for a
raster-based image.

Development of a UVC

decoder to it and receive Logical Data View tags back
from the UVC. With these tags and the explanation
defined in the LDS, a representation of the original
object can be created (Figure 4).

3. The UVC conceptual model

Developing a UVC in the future requires a well-defined
specification. This specification will become final and
publicly available soon. It defines four primary aspects
of the emulator:
• The architecture
• The loading/state specification
• The communication behaviour of the abstract

channel
• The supported instruction set

3.1. Architecture

The core element of the UVC is its segment-based
memory. Normally, a certain amount of memory is
available to all software running on a system. This
introduces the problem that applications using parts of
memory can overwrite other critical parts in the same
memory space. Another restriction of a conventional
computer system is the limited available memory
space. Instead, the UVC uses segments of memory to
store distinct parts of data, which takes away the first
problem. Each segment has the ability to use more than
4 Gigabits of memory and the same number of distinct
registers. Each register and available memory can grow
without limitation (physically register length is
bounded by its length specification defined as a 32 bit
number equivalent to 4 Giga), essentially taking away
the second problem stated.

Segments are logically identified by 32 bit numbers.
The architecture makes a distinction between logical

and physical segments. Logical segments are the
segments referenced by a number within a format
decoder. Physical segments are the actual segments as
they are internally allocated by the UVC and they are
identified with the prefix ‘Ph’ to distinguish them from
logical segments. For example, within a format decoder
a logical segment 4 could be internally represented by
physical segment Ph32.

Programs written for the UVC can use this segment-
based memory. These UVC programs consist of
different pieces of code, called sections, which are
stored in separate segments. A section consists of a
sequence of UVC instructions that form a routine,
performing a set of operations. Each section can call
on one or more other sections, linking the whole
program together. A logical segment used in one
section does not have to be unique from other
sections, because the UVC internally translates these
logical addresses into unique physical ones. Sections
have to respect four reserved logical segment numbers,
which are:
• Segment 0 is a shared segment that can be

accessed from any other segment in memory by
referencing to the logical segment 0. The memory
of segment 0 is used to store the data from the file
to be decoded. The registers can be used to store
global constants used by the decoder program.

• Segment 1 is the logical reference to a segment
associated with every individual section. Each
section is only stored once in memory, but can be
instantiated multiple times. Each instantiation
can use the logical segment 1 as a local segment,
which is accessible by every other instantiation.

• Segment 2 is the logical segment that serves as
parameter segment. When a section of the program
calls another section, it can send a parameter
segment with it. This segment is made accessible in
the called section by using segment 2.

200 Journal of Information Science, 31 (3) 2005, pp. 196–208 © CILIP, DOI: 10.1177/0165551505052347

LDV Digital object

UVC and
decoder

<IMAGE>
.
.
<PIXEL>
 <POSX>0
 <POSY>0
 <RED>236
 <GREEN>102
 <BLUE>255
<PIXEL>
.

Viewer?
Digital object
from archive

Fig. 4. Reconstruction of a digital object.

J.R. VAN DER HOEVEN ET AL.

• Segment 3 is the logical segment that should
contain the start-up section of the program, i.e. the
main routine.

The administration mechanism is realized by three
components: dispatch table, activation stack, and
instruction pointer. Figure 5 shows an overview of
these components, together with the segment-based
memory structure.

3.1.1. Dispatch table. To keep track of all sections of
program code loaded into the UVC, a dispatch table is
introduced. Each section should have a unique ID
serving as a key to identify a particular section within
the UVC. When the UVC receives a section it reads its
section ID and creates two new segments: one to store
the code of the section in and the other for defining the
local segment 1 associated with this section. After that,
it has to record all logical segments used by the section.
During this loading process, all the information of the
different sections will be stored in the entries of the
dispatch table, creating a map that can be used during
the execution of the program.

In Figure 6 a dispatch table is depicted after loading
two sections with section ID 3 (start-up) and ID 100.
The first section (ID = 3) is stored in physical segment
Ph1 and has physical segment Ph2 assigned as logical
segment 1 (local segment). The second section (ID =
100) is stored in physical segment Ph3 with physical
segment Ph4 as associated logical segment 1. The infor-
mation about the logical segments of each section will
be used later on by the activation stack as described
next.

3.1.2. Stack architecture. The UVC needs a stack
mechanism for the execution of a program. A stack is
like a pile of plates, where the one added on top is the
first one taken out again according to the Last-In-First-
Out (LIFO) principle. Items can be added to the stack
via a push operation and removed from the stack using
a pop operation. In UVC terms, the items are formed by
creating an instance of a section, called an activation
record, and the stack is consequently called an acti-
vation stack. Each call to a section will create a new
activation record of the called section. As a result, the
activation record will be pushed onto the activation
stack. Moreover, it is possible that a section calls itself,
creating a recursive function. This is a powerful aspect
of stack architecture, making programs very flexible.
When the code of the current activation record is at the
end, it will be popped from the activation stack and the
former last activation record on the stack will become
active again. The process of pushing and popping

activations continues until all activation records are
popped from the stack and there is nothing left to do.

An important aspect of the UVC’s stack architecture
is the way information is passed between two sections
on the stack. This is done by defining a parameter
segment at the calling section when the call is made.
This segment is then linked to logical segment 2 of the
called section. In this way, data stored in a particular
segment of the caller can be accessed by using segment
2 in the called section.

3.2. State specification and communication behaviour

Within the UVC different states have to be distin-
guished to mark what the UVC has to do. Each state
performs a certain task within the UVC. Four states are
defined and will be handled in the sequential order
that is presented in Table 1.

If the UVC is in the ‘execute program’ state it can
return from this state if:
• the UVC encounters the STOP instruction in the

executing code;
• some fatal error has occurred, like an instruction

mismatch or memory problems.
The interaction between the viewer and the UVC

runs through a half-duplex, synchronous communi-
cation channel, whereas the data packages are for-
matted in a message-based manner.

3.3. Instruction set

UVC programs should be written using a predefined
UVC instruction set. This set consists of 25 instruc-
tions, categorized as follows:
• logical bit manipulation – supports and, or and

not operations on registers;
• arithmetic operations – add, subtract, multiply or

divide register values;
• comparison – compares values on equal and

greater than;
• memory operations – load and store data in and

from register to memory;
• register sign handling – reads or writes the sign of

a register;
• jump and context switching – jump within a

section or call another section;
• communication – communicates via in and out

with the viewer;
• control operation: stops the UVC from execution.

With this set of instructions it is possible to write any
sort of program.

201Journal of Information Science, 31 (3) 2005, pp. 196–208 © CILIP, DOI: 10.1177/0165551505052347

Development of a UVC

4. Realization

Parallel to the definition of the UVC specification, a
UVC demonstration tool has been developed. The

purpose of this demonstration tool is to experience the
capabilities and limitations of the UVC approach. To
prove its usefulness, the KB/IBM project chose to
create a secure path for restoring digital still images in

202 Journal of Information Science, 31 (3) 2005, pp. 196–208 © CILIP, DOI: 10.1177/0165551505052347

Segment M

Register 1

Unlimited Address
Space

Register 2

Register 3

Register N

Segment 4

Register 1

Unlimited Address
Space

Register 2

Register 3

Register N

Segment 3

Register 1

Unlimited Address
Space

Register 2

Register 3

Register N

Segment 2

Register 1

Unlimited Address
Space

Register 2

Register 3

Register N

Segment 1

Register 1

Unlimited Address
Space

Register 2

Register 3

Register N

Conditional sign Error code

Logical to
physical
mapping

Return address
(section, address)

Section ID Physical
segment

Physical
segment 1

Activation stack

Section ID Physical
segment

Segment 1 Logical
segments

Dispatch table

Segment Address

Instruction pointer

Fig. 5. Segment-based memory and administration components.

Segment 1

Registers

Section
3

Dispatch table

Section ID Phys seg. Segment 1 Log. segs

3 Ph1 Ph2 4,5

100 Ph3 Ph4 2,5,6,10

Segment 2

Registers

empty Segment 4

Registers

empty

Segment 3

Registers

Section
100

Fig. 6. Dispatch table after loading two sections.

J.R. VAN DER HOEVEN ET AL.

JPEG format using the UVC-based preservation method.
The choice for JPEG as file format is based on its wide-
spread use, its versatile capabilities and the ability to
create JPEG images out of PDF files. Reconstructing a
PDF using the UVC would take more effort than was
planned for the development of a demonstration tool
and could be a next step in the project.

The realization of the UVC concept entailed the
development of a UVC, an Image LDV Viewer, a JPEG
format decoder and an Image LDS. We chose to imple-
ment the UVC and viewer in Java, because of its object-
oriented structure and portability to different
platforms. By means of incremental design, several iter-
ation cycles in the development process have been run,
giving feedback concerning the UVC in practice. These
results have been used to further refine the specifi-
cation, design and implementation of the UVC.

4.1. UVC

The UVC is described in an object-oriented structure,
which was the design for a Java-based implementation.
It consists of different objects, each with its own
specific task. Three primary tasks were defined:

• memory management – internal segment-based
memory management;

• execution management – execution control of the
program running on UVC;

• I/O management – input/output operations
between UVC and viewer.

In Figure 7, the system is schematically decomposed
into these and other objects together with their multi-
plicity. The objects in this schema have a one-to-one
relation with the classes in the Java implementation.

4.1.1. Memory manager. The memory manager organ-
izes storage and retrieval of data inside the UVC. Within
the UVC, memory is organized in different segments.
Each section of code is stored in its own segment. A
segment on its own can contain multiple memory blocks
and registers, represented as different objects in the
structure. The memory manager controls the allocation
and usage of segments and is bit addressable. Internally
these bit addresses are converted into byte addresses,
because Java uses bytes as its smallest variable types.

4.1.2. Execution manager. The heart of the UVC is
formed by the execution manager. The execution

203Journal of Information Science, 31 (3) 2005, pp. 196–208 © CILIP, DOI: 10.1177/0165551505052347

Table 1
States of the UVC

State Action to go back to initial state

Load constants Load constants in global segment 0
Number of registers to be loaded in segment 0 (32 bits)
List of registers to be loaded:

•• register number to be loaded (32 bits)
•• sign of the constant, 0 = positive, 1 = negative (1 bit)
•• length of the constant to be loaded (32 bits)
•• the bit string of the constant

Load section Load a section of object code with format
Logical section number (32 bits)
Number of logical segments used (32 bits)
List of local defined segments:

•• logical segment number (32 bits)
Length of the section code (32 bits)
Section code

Initial data load Load the data file in segment 0
Length of the data file to be loaded (32 bits)
Data file

Execute program Start program
This one has no arguments. The UVC will start at address 0 of the logical section 3, which is
presumed to contain the main program.

Development of a UVC

manager controls the actual flow of the execution,
carrying out each program instruction in sequential
order and one at a time. In this implementation, pipelin-
ing is not considered because the UVC should be as
simple as possible.

The execution manager controls three objects:
instruction, activation stack and dispatch entry.
The instruction object is used to keep track of the next
instruction to execute; it works like a pointer to one
particular segment and address in memory. The
dispatch entry object is created for each loaded section
in the UVC, forming the entries of the dispatch table.
Finally, the activation stack object implements the
stack-based architecture as described by the UVC
concept. Each time a section on the stack is activated,
the object activation record will be instantiated.

4.1.3. I/O manager. The I/O Manager implements an
abstract communication channel between the viewer
program and the UVC. The communication channel
loads constants, sections and data into the UVC and in
turn outputs the processed data as elements of the LDV.
The interface between the UVC and viewer is handled
by a Service Access Point (SAP). This SAP functions as
the communication channel for sending and receiving
data to and from both the UVC and the viewer, as
depicted in Figure 8.

4.2. Image LDV Viewer

Besides the UVC, a viewer is needed to control the
whole process. For this demonstrator an Image LDV
Viewer has been created. Because various LDV viewers
will be needed, the Image LDV Viewer is designed for
reusability. Handling the image information of the LDV
is viewer specific, but communication via SAP is iden-
tical for all viewers. The implication of the distinction
between general and specific viewer components is
that new viewers can inherit these general components,
making it easier and more efficient to construct new
viewers.

In addition to process control, the viewer supports a
graphical user interface (GUI). It contains a menu bar,
control bar, image field and status bar. The menu bar

204 Journal of Information Science, 31 (3) 2005, pp. 196–208 © CILIP, DOI: 10.1177/0165551505052347

UVC

Register Memory Block

Segment

Execution Manager Memory Manager

Dispatch EntryActivation Stack Instruction

Activation Record

SAP

1

1
1

1

1 1

1

1

1
1

1

1

*

**

1 *

*

11 1

1

I/O Manager

Fig. 7. Class diagram of the UVC.

UVC SAP Viewer

Fig. 8. I/O communication between UVC and viewer via a
Service Access Point (SAP).

J.R. VAN DER HOEVEN ET AL.

offers a print function and about information for this
program. The control bar allows the user to select an
image and image decoder, as depicted in Figure 9. The
reconstruction process can be started and stopped via
the appropriate buttons.

The image field shows the image, with scrollbars if
necessary. During reconstruction the image is refreshed
after every 1000 pixels, showing the progression on
screen. Figure 10 demonstrates the reconstruction of a
JPEG image with dimensions 500 � 375 pixels. The

205Journal of Information Science, 31 (3) 2005, pp. 196–208 © CILIP, DOI: 10.1177/0165551505052347

Fig. 10. Screenshot of the Image LDV Viewer – image during reconstruction.

Fig. 9. Screenshot of the Image LDV Viewer – select an image.

Development of a UVC

status bar at the bottom shows the image dimensions,
progress of the image and estimated time until
completion.

Apart from the UVC and Image LDV Viewer, a JPEG
format decoder has been developed, together with an
LDS description and image test set. The JPEG format
decoder is based on the JFIF 1.02 specification by the
Independent JPEG Group [27]. At the end of the
development of the UVC a second image format
decoder has been implemented for GIF87a images,
following CompuServe’s Graphics Interchange Format
specification from 1987 [28]. The ability to use the
same UVC and image viewer for different image
formats shows the strength of this approach.

5. Experiences

The primary goal of the UVC for images project was to
develop a fully functional UVC and viewer to prove
that the concept works. In this, the flexibility of the
UVC is more important than the speed of execution.
The UVC was not designed to be a race monster, due to
the emphasis on flexibility and Java’s reputation on
performance [29].

The first tests showed this prediction was right.
Figure 11 shows one of the execution results, obtained
during execution of an 8-by-8 pixels JPEG image on a
test machine running Windows 2000 on a 500 MHz
Intel Pentium III processor and 320 Megabytes of RAM.

The original execution took about 21 seconds!
Because the execution time is almost linearly corre-
lated with the image area, extrapolating these results to
an A4 paper scanned on 300 dpi (dimensions 3300 �
2500 pixels) would result in a reconstruction time of
several days. The execution speed of the UVC is at least
a factor 500 slower than an average processor. As a rule
of thumb a CPU twice as fast makes the UVC also run
two times faster. However, even taking the fastest
processor available will not give us the speed we
would like.

One of the major speed factors is the bit-oriented
nature of the UVC, which had to be mapped and
modelled on the byte-oriented architecture of the Java
Runtime Environment (JRE). It takes a lot of conversion
and shifting operations when manipulating bit strings
across the JRE byte boundaries. Another major factor is
the increase in data to be transferred over the com-
munication channel by the LDV specification of the
digital object. Optimizing the current implementation
cannot address both these factors directly.

Despite these factors, other issues could be addressed
to gain higher performance rates. To do so, all steps
between the native platform and the reconstructed
image have been analysed and optimized if possible. In
this process, three main issues were distinguished: the
JRE, the format decoder and the UVC implementation.

The JRE is based on a Java Virtual Machine (JVM).
Although this offers portability between different plat-
forms, it also introduces an extra layer between operat-
ing system and Java application causing overhead. To
limit the loss of performance by the JRE, tests have
been done with different versions of JREs from
different manufacturers. The outcomes, as shown in
Table 2, indicated that the IBM JRE version 1.3 offers
the best performance for the UVC. However, this was
the JRE we had already used. Converting the UVC to
native code, which converts Java to a platform depend-
ent executable, has also been considered and tested but
it takes away the portability advantage of Java and it
did not offer the desired performance improvements.

Optimization of the format decoder and UVC is more
successful. Analysis of the execution flow of the UVC
and its decoder pointed out various delays in function
calls. Improving these aspects resulted in an overall
performance boost of more than 600% on the same test
machine compared to the first tests. At the end the peak
performance on the test machine was measured at
109,000 instructions per second.

Other refinements during development were based
on improvements of the UVC specification. These
include slight changes in the instruction set, exclusion

206 Journal of Information Science, 31 (3) 2005, pp. 196–208 © CILIP, DOI: 10.1177/0165551505052347

Execution statistics:

Total number instructions : 361529 instr.
Total execution time : 21 sec.
Performance : 17000 instr./sec.

Fig. 11. UVC execution statistics reconstructing an 8 � 8
JPEG image.

Table 2
JRE performance test

JRE performance test Instructions/s Index

IBM JRE v1.3 17,000 1.00
Sun JRE v1.3.1 12,240 0.72
Sun JRE v1.4.2 14,280 0.84
Sun JRE v1.5.0 12,580 0.74

J.R. VAN DER HOEVEN ET AL.

of dynamic linking within the UVC to stay close to the
principle of keeping the UVC simple and clear, and
some extra reserved segments in memory offering more
programming freedom for UVC program developers.
These changes resulted in the current UVC specifi-
cation as described above.

6. Conclusions

The UVC demonstration tool has successfully been
developed and is operational. It was delivered at the
National Library of the Netherlands and it has been
brought to the attention of various other institutions. To
create a broader interest, the latest version of the UVC
demonstration tool is now freely available to the com-
munity at large at the IBM Alphaworks web site [30].
This enables the community to get acquainted with the
UVC solution and provide valuable feedback for
further development.

As a result, the chances are increased that the UVC
will be one more option in the variety of preservation
strategies that must serve to maintain access to digital
objects. A valuable option due to its potential for
usability in the very long term, though its performance
still must be improved.

At the same time results are under way on the
implementation of a Java UVC compiler to enable other
organizations to develop their own format decoders. By
sharing these format decoders among the different
institutions, application of the UVC solution will be
extended.

The current UVC solution focuses on a combination
of emulation through the UVC and migration through
the universal technology-independent formats based
on XML-like specifications. This approach works well
for static digital object types, like text, image, sound
and animation. These objects do not contain dynamic
behaviour such as user interaction or executable
models used to produce dynamic content during
program execution. The next research step we will take
is to apply the UVC concept to ‘full’ emulation where
the applications are emulated on the UVC to enable
access to digital objects in their original format.

Acknowledgement

We would like to thank Hilde van Wijngaarden
(National Library of the Netherlands) for her valuable
comments.

References

[1] Cedars, Curl Exemplars in Digital Archives (1998).
Available at: www.leeds.ac.uk/cedars/ (accessed 15
December 2004).

[2] CAMiLEON, Creative Archiving at Michigan & Leeds:
Emulating the Old on the New (1999). Available at:
www.si.umich.edu/CAMILEON/ (accessed 15 December
2004).

[3] NEDLIB, Networked European Deposit Library (1998).
Available at: www.kb.nl/coop/nedlib/ (accessed 15
December 2004).

[4] T. van der Werf-Davelaar, Long-term preservation of
electronic publications: the NEDLIB project, D-Lib
Magazine 5(9) (1999). Available at: www.dlib.org/dlib/
september99/vanderwerf/09vanderwerf.html (accessed
15 December 2004).

[5] Koninklijke Bibliotheek, National Library of the Nether-
lands (2004). Available at: www.kb.nl (accessed 15
December 2004).

[6] LTP study, KB/IBM Long-Term Preservation Study
(2002). Available at: www.kb.nl/hrd/dd/dd_onderzoek/
dnep_ltp_study.html (accessed 15 December 2004).

[7] AdobeTM Portable Document Format (PDF) (2004). Avail-
able at: www.adobe.com/products/acrobat/readermain.
html (accessed 15 December 2004).

[8] World Wide Web Consortium, SGML is ISO standard
8879:1991 (1995). Available at: www.w3.org/MarkUp/
SGML/ (accessed 15 December 2004).

[9] World Wide Web Consortium, XML Tutorial (1999).
Available at: www.w3schools.com/xml/default.asp
(accessed 15 December 2004).

[10] N. Ritter, The unofficial TIFF homepage (1997). Avail-
able at: http://home.earthlink.net/~ritter/tiff/ (accessed
15 December 2004).

[11] DIAS, Digital Information Archiving System (2003).
Available at: www-5.ibm.com/nl/dias/ (accessed 15
December 2004).

[12] J.F. Steenbakkers, Treasuring the digital records of
science: archiving e-journals at the Koninklijke Biblio-
theek, RLG Diginews 8(2) (2004). Available at: www.
rlg.org/en/page.php?Page_ID=17068 (accessed 15
December 2004).

[13] C. Bellekom: Building preservation functionality in a
digital archive: the National Library of the Netherlands,
Learned Publishing 17(4) (2004), 275–80.

[14] W. Roberts: Long-term preservation of electronic infor-
mation, Bulletin of the Records Management Society
123 (December 2004) 3–7.

[15] J. Rothenberg, Avoiding Technological Quicksand:
Finding a Viable Technical Foundation for Digital
Preservation (1998). Available at: www.clir.org/pubs/
reports/rothenberg/contents.html (accessed 15 December
2004).

[16] Emulation: context and current status, Digital Preser-
vation Testbed, The Hague, The Netherlands (2003).

207Journal of Information Science, 31 (3) 2005, pp. 196–208 © CILIP, DOI: 10.1177/0165551505052347

Development of a UVC

208 Journal of Information Science, 31 (3) 2005, pp. 196–208 © CILIP, DOI: 10.1177/0165551505052347

Available at: www.digitaleduurzaamheid.nl/bibliotheek/
docs/white_paper_emulatie_EN.pdf (accessed 15
December 2004).

[17] Wikipedia: the Free Encyclopedia, List of Emulators
(2004). Available at: http://en.wikipedia.org/wiki/List_
of_emulators (accessed 15 December 2004).

[18] B. Supnik, Simulators: virtual machines of the past (and
future), Queue 2(5) (2004), 52–8.

[19] Bochs, Think inside the Bochs (2004). Available at: http:
//bochs.sourceforge.net (accessed 15 December 2004).

[20] QEMU CPU Emulator (2004). Available at: http:
//fabrice.bellard.free.fr/qemu/ (accessed 15 December
2004).

[21] P. Mellor, P. Wheatley and D. Sergeant, Migration on
Request: a Practical Technique for Digital Preservation,
ECDL 2002, Rome, Italy (2003). Available at: www.
si.umich.edu/CAMILEON/reports/migreq.pdf (accessed
15 December 2004).

[22] J. Rothenberg, Using Emulation to Preserve Digital
Documents, Koninklijke Bibliotheek, The Hague, The
Netherlands (2000). Available at: www.kb.nl/pr/publ/
usingemulation.pdf (accessed 15 December 2004).

[23] R.A. Lorie, A methodology and system for preserving
digital data. In: G. Marchionini and W. Hersh (eds), Pro-
ceedings of the 2nd ACM/IEEE Joint Conference on

Digital Libraries (JCDL 2002) Portland, Oregon (ACM,
New York, 2002) 312–19.

[24] R.A. Lorie, The UVC: A Method for Preserving Digital
Documents: Proof of Concept. The Hague, IBM and
Koninklijke Bibliotheek (2002). Available at: www.kb.nl/
hrd/dd/dd_onderzoek/reports/4-uvc.pdf (accessed 15
December 2004).

[25] J.F. Steenbakkers, Preserving electronic publications,
Information Services and Use 22(2–3) (2002) 89–96.

[26] E. Oltmans and H. van Wijngaarden, Digital preservation
in practice: the e-Depot at the Koninklijke Bibliotheek,
VINE 34(1) (2004) 21–6.

[27] JPEG JFIF image format specification (2003). Available
at: www.w3.org/Graphics/JPEG/ (accessed 15 December
2004).

[28] Compuserve, Graphics Interchange Format (GIF)
specification (1987). Available at: www.w3.org/
Graphics/GIF/spec.gif89a.txt (accessed 21 January
2005).

[29] The Java Performance Report (1999?). Available at:
www.geocities.com/ResearchTriangle/Node/2005/jpr/
(accessed 15 December 2004).

[30] IBM, Alphaworks Emerging Technologies, Digital Asset
Preservation Tool (2004). Available at: www.alphaworks.
ibm.com/tech/uvc (accessed 15 December 2004).

